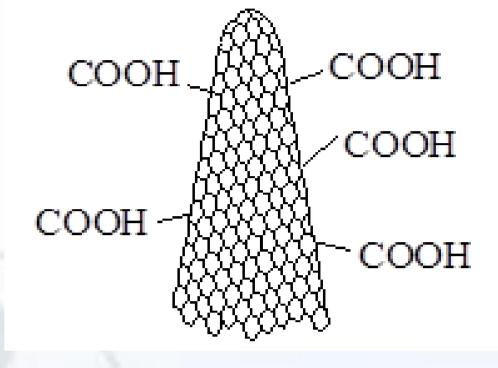
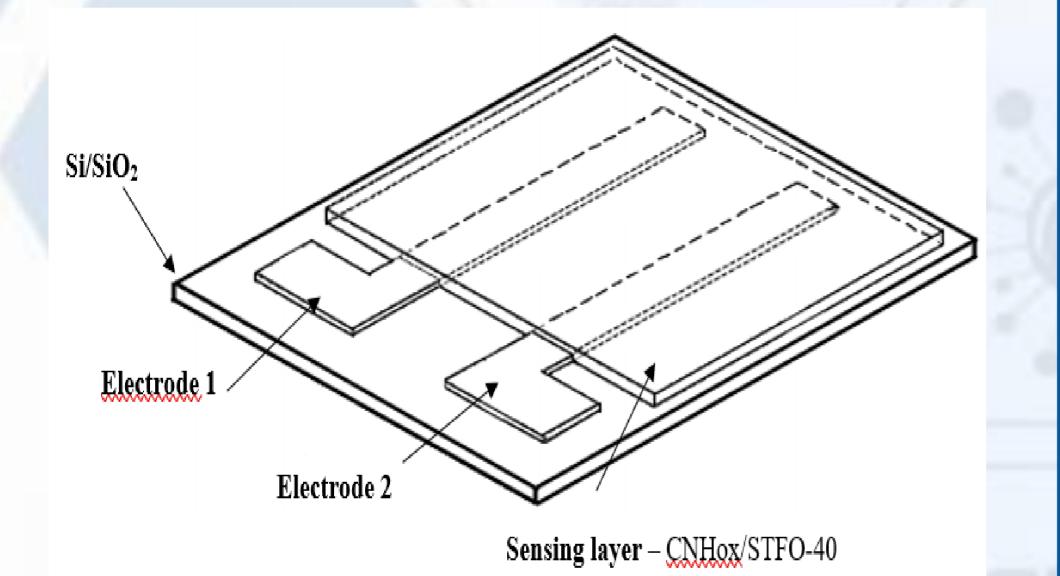


Matrix nanocomposite for chemoresistive oxygen sensor

Romanian Patent Application A100548, RO, OSIM, 08.09.2022

Field of invention


Oxygen sensors are widely used in Industrial applications, such as the control of air-fuel mixture, combustion engine, domestic and other small-scale boilers emission monitoring in automotive, steel and cement industries. Monitoring O₂ concentration is essential in other fields, such as medicine, food packaging industries, marine biology, soil aeration, limnology and waste management.


Original approach

 This invention includes the design and manufacturing processes for a new resistive, room temperature oxygen sensor, employing perovskite SrTi_{0.6}Fe_{0.4}O₃ (STFO40) / oxidized carbon nanohorns (CNHox) nanocomposite as sensing layer.

 The oxygen sensor includes a Si/SiO₂ substrate, interdigitated electrodes and a sensing layer obtained via drop casting method.

- The oxygen monitoring capability of the sensing layers was investigated by applying a current between the two electrodes and measuring the voltage, while varying the oxygen concentration in the testing device. The resistance of the sensitive layer varies with the oxygen concentration.

Figure 2 – The structure of sensor with linear electrodes

Sensor architecture

a) The suspension obtained is deposited by the drop casting method using a Si/SiO₂ substrate with linear electrodes or with interdigitated electrodes (after masking the contact area).

b) The obtained layer is subjected to a thermal treatment at 500°C, 60 minutes. The thermal treatment ensures the strengthening of the sensitive layer.

• . •	•	

Sensor manufacturing

Sensitive layer preparation comprises the following stages: a) Stoichiometric quantities of $Sr(NO_3)_2$ and $Fe(NO_3)_3$ are dissolved in 10 mL of deionized water;

b) TiO₂ nanopowder is added to the solution obtained in the previous step;

c) Separately, a 4M NaOH solution is prepared;

 d) Solutions obtained in steps a) + b) is pipetted into the NaoH solution prepared in step c), under continuous magnetic stirring;

e) The obtained reaction mixture was ultrasonicated for 2 hours, using a Hielscher UP200St ultrasonic generator (200 W, 26 kHz). The temperature in the reaction vessel was maintained at T < 350K using an ice bath.

f) The pH of the solution is adjusted to a value of approximately

g) The solution is filtered, dried in air at a temperature of 100 °C.

 h) Anhydrous synthesized STFO- 40 is then subjected to a thermal treatment at 500 °C for one hour.

i) Prepare a suspension of STFO-40, terpineol (solvent), carboxymethylcellulose (binder), caprylic acid (surfactant) and oxidized carbon nanohorns (Fig.1). The components of the suspension are added in a mass ratio of 30/30/5/5/30.

The oxygen monitoring capability was investigated O₂/N₂ mixtures in different proportions.


Advantages of the proposed sensing layer

The new synthesized sensing layer used in the manufacturing of resistive oxygen sensor has several significant advantages:

- the presence of CNHs-ox ensures a high specific surface area / volume ratio as well as a substantial affinity for oxygen molecules;
- detection at room temperature;
- rapid response of the sensor to variations of oxygen concentration.

Acknowledgments

IMT authors would like to acknowledge the financial support provided by the Romanian Ministry of Education and Research via the "MICRO-NANO-SIS PLUS" Nucleu program, grant number PN 19 16, and the project 673 PED/2022 (CARESS), financed by The Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI).

